Dendritic Cells, Antigen Presentation, T Lymphocyte Activation

Abul K. Abbas UCSF

FOCIS

Lecture outline

- · Dendritic cells and antigen presentation
- · The role of the MHC

T cell activation

Costimulation, the B7:CD28 family

The life history of T lymphocytes

The challenge of finding antigens

- Very few lymphocytes in the body are specific for any one microbe (or antigen)
 - Specificity and diversity of antigen receptors: T and B lymphocytes recognize 10^6 10^9 antigens; therefore, few lymphocytes with the same receptors

The challenge of finding antigens

- Very few lymphocytes in the body are specific for any one microbe (or antigen)
 - Specificity and diversity of antigen receptors: the immune system recognizes and distinguishes between 10^6 10^9 antigens
- These few lymphocytes must be able to locate microbes that enter and reside anywhere in the body
 - The small number of lymphocytes specific for each antigen cannot patrol all epithelia (routes of microbe entry) or tissues where the antigen may be present

The challenge of finding antigens

- Very few lymphocytes in the body are specific for any one microbe (or antigen)
 - Specificity and diversity of antigen receptors: the immune system recognizes and distinguishes between 10^6 10^9 antigens
- These few lymphocytes must be able to locate microbes that enter and reside anywhere in the body
 - The small number of lymphocytes specific for each antigen cannot patrol all epithelia (routes of microbe entry) or tissues where the antigen may be present
- Therefore, antigens and lymphocytes have to be brought together
 - The function of peripheral (secondary) lymphoid organs

Capture of antigens

Sites of antigen entry

Sites of initial antigen capture

Sites of antigen collection and capture

Why are dendritic cells the most efficient APCs for initiating immune responses?

- Location: at sites of microbe entry (epithelia), tissues
- Receptors for capturing and reacting to microbes: Toll-like receptors, other receptors
- Migration to T cell zones of lymphoid organs
 - Role of CCR7
 - Co-localize with naïve T cells
- Practical application: dendritic cell-based vaccines for tumors

Dendritic cell subsets

- Classical: CD11c+, located in epithelia (site of microbe entry), role in capture and presentation of most antigens
- Plasmacytoid: source of type I IFN; capture of blood-borne antigens, transport to the spleen
- Many subsets have been described;
 significance unclear

Dendritic cell subsets

Murphy et al, Ann Rev Immunol 2015; classification based on transcription factors

What do T cells see?

- All functions of T cells are mediated by interactions with other cells
 - CD4+ helper T cells help B cells to make antibodies and "help" macrophages to destroy what they have eaten
 - CD8+ cytotoxic (killer) T lymphocytes kill infected cells

 How does the immune system ensure that T cells see only antigens on other cells?

What do T cells see?

- All functions of T cells are mediated by interactions with other cells
 - Helper T cells "help" B cells to make antibodies and "help" macrophages to destroy what they have eaten
 - Cytotoxic (killer) T lymphocytes kill infected cells
- To ensure cellular communications, T cells see antigens NOT in the circulation but only when displayed by molecules on the surface of other cells
 - These molecules are HLA (generic name: MHC) and the cells displaying the antigen are APCs

A model of T cell recognition of peptide displayed by an MHC molecule

Abbas, Lichtman and Pillai. Cellular and Molecular Immunology, 7th edition, 2011 (C) Elsevier

Human MHC = HLA

Because MHC
molecules are on
cells and can
display only
peptides, T
lymphocytes can
recognize only
cell-associated
protein antigens

MHC Structures

All MHC molecules have a similar basic structure: the cleft at the N-terminal region binds peptide antigens and is recognized by T cell receptors and the membrane-proximal domain binds CD4 or CD8.

Pathways of antigen processing

Functions of antigen-presenting cells

- Capture antigens and take them to the "correct" place
 - Antigens are concentrated in peripheral lymphoid organs, through which naïve lymphocytes circulate
- Display antigens in a form that can be recognized by specific lymphocytes
 - For T cells: MHC-associated peptides (cytosolic peptides to class I, vesicular peptides to class II)
 - For B cells: native antigens
- Provide "second signals" for T cell activation
 - Critical for initiation of responses

Steps in the activation of T lymphocytes

Molecules involved in T cell activation

The two-signal requirement for lymphocyte activation

Second signals for T cells: "costimulators" induced on APCs by microbial products, during early innate response

Second signals for B cells: products of complement activation recognized by B cell complement receptors

Role of costimulation in T cell activation

Costimulation

- Required for initiating T cell responses (activation of naïve T cells)
- Ensures that T cells respond to microbes (the inducers of costimulators) and not to harmless antigens
- Targets for therapeutic blockade of T cell responses

The B7:CD28 families

Inhibition

Major functions of selected CD28-B7 family members

- CD28-B7: initiation of immune responses
- ICOS-ICOS-L: T cell help in germinal center reactions (antibody responses)

- CTLA-4-B7: inhibits early T cell responses in lymphoid organs
- PD-1:PD-L1,2: inhibits effector T cell responses in peripheral tissues

Costimulators other than B7:CD28

- Many proteins of the TNF-receptor family are expressed on T cells and implicated in T-cell activation and control
 - Functions often demonstrated in complex experimental systems or in vitro
 - Roles in disease (human or animal models) not definitely established
- Possible therapeutic targets?

T cell activating and inhibitory receptors

